Uni-Logo

Projects

The following is a list of research projects and possible PhD subjects for students working in the Graduiertenkolleg.

  • Index theory, higher torsion and algebraic K-theory (S. Goette)
  • Eta invariants in differential topology (S. Goette) 
  • Arakelov-Motives (S. Goette, A. Huber-Klawitter)
  • Quotient spaces in higher-dimensional algebraic geometry (D. Greb)
  • Differential forms on singular spaces: vanishing theorems and Hodge theory (D. Greb, S. Kebekus)
  • Special values of Dedekind ΞΆ-functions (A. Huber-Klawitter)
  • Periods, torsors and motives (A. Huber-Klawitter)
  • Moduli spaces in higher-dimensional algebraic geometry: Variation of Hodge structures and deformation theory (S. Kebekus)
  • L2-cohomology and Morse theory for singular spaces (U. Ludwig)
  • Noncommutative Hodge theory and Gromov-Witten invariants (E. Scheidegger)
  • Deformation theory of matrix factorization and holomorphic vector bundles (E. Scheidegger)
  • Koszul duality in representation theory (W. Soergel)
  • Formality in modular representation theory (W. Soergel)
  • Elliptic genus and the chiral de Rham complex (K. Wendland)
  • Deformation theory of conformal field theories (K. Wendland)
  • Affine Brown-Gersten property and h-principles (M. Wendt)
  • Spherical fibrations in A1-homotopy (M. Wendt)
 
Personal tools